3.509 \(\int \frac{\sec (c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx\)

Optimal. Leaf size=74 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{d \sqrt{a+b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{d \sqrt{a-b}} \]

[Out]

-(ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]]/(Sqrt[a - b]*d)) + ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b
]]/(Sqrt[a + b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0942083, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2668, 708, 1093, 206} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{d \sqrt{a+b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{d \sqrt{a-b}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

-(ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]]/(Sqrt[a - b]*d)) + ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b
]]/(Sqrt[a + b]*d)

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 708

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2*e, Subst[Int[1/(c*d^2 + a*e^2 - 2*c
*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1093

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/(b/
2 - q/2 + c*x^2), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{\sqrt{a+b \sin (c+d x)}} \, dx &=\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+x} \left (b^2-x^2\right )} \, dx,x,b \sin (c+d x)\right )}{d}\\ &=\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{-a^2+b^2+2 a x^2-x^4} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{a-b-x^2} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{d}+\frac{\operatorname{Subst}\left (\int \frac{1}{a+b-x^2} \, dx,x,\sqrt{a+b \sin (c+d x)}\right )}{d}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{\sqrt{a-b} d}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{\sqrt{a+b} d}\\ \end{align*}

Mathematica [A]  time = 0.0544054, size = 74, normalized size = 1. \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a+b}}\right )}{d \sqrt{a+b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin (c+d x)}}{\sqrt{a-b}}\right )}{d \sqrt{a-b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

-(ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]]/(Sqrt[a - b]*d)) + ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b
]]/(Sqrt[a + b]*d)

________________________________________________________________________________________

Maple [A]  time = 0.263, size = 62, normalized size = 0.8 \begin{align*}{\frac{1}{d}\arctan \left ({\sqrt{a+b\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{-a+b}}}} \right ){\frac{1}{\sqrt{-a+b}}}}+{\frac{1}{d}{\it Artanh} \left ({\sqrt{a+b\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{a+b}}}} \right ){\frac{1}{\sqrt{a+b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*sin(d*x+c))^(1/2),x)

[Out]

1/d/(-a+b)^(1/2)*arctan((a+b*sin(d*x+c))^(1/2)/(-a+b)^(1/2))+arctanh((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2))/d/(a+
b)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sec \left (d x + c\right )}{\sqrt{b \sin \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)/sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\sqrt{a + b \sin{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sin(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)/sqrt(a + b*sin(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.08022, size = 101, normalized size = 1.36 \begin{align*} \frac{b{\left (\frac{\arctan \left (\frac{\sqrt{b \sin \left (d x + c\right ) + a}}{\sqrt{-a + b}}\right )}{\sqrt{-a + b} b} - \frac{\arctan \left (\frac{\sqrt{b \sin \left (d x + c\right ) + a}}{\sqrt{-a - b}}\right )}{\sqrt{-a - b} b}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

b*(arctan(sqrt(b*sin(d*x + c) + a)/sqrt(-a + b))/(sqrt(-a + b)*b) - arctan(sqrt(b*sin(d*x + c) + a)/sqrt(-a -
b))/(sqrt(-a - b)*b))/d